Training Material Number : UA1402

Author: Jeong Hwan Lim

Date : 2021-08-04

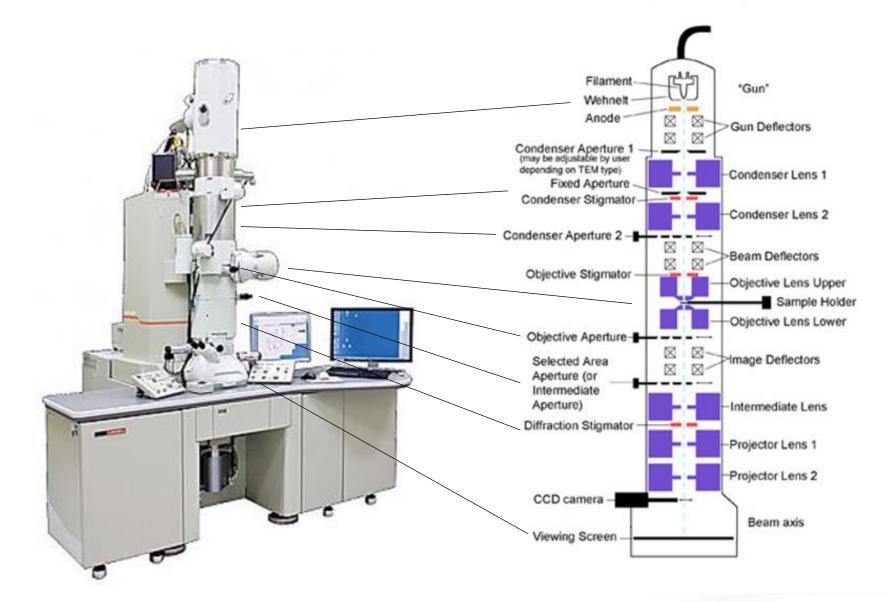
Transmission Electron Microscopy

Normal-TEM Operation Training Course

UCRF TEMs Specification

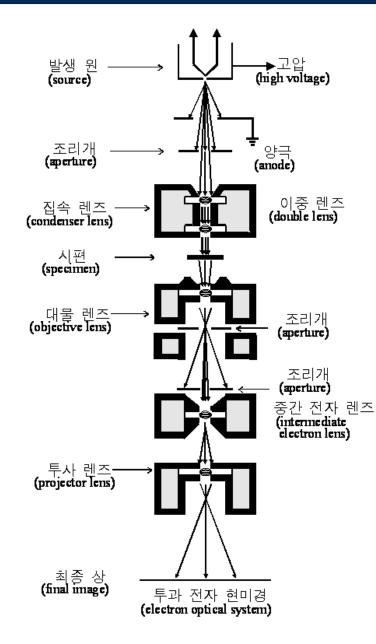
ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

B115, Bldg.102	B102, Bldg.108	B106, Bldg.102	B104, Bldg.102	B104,B105, Bldg.102
Collaboration	Request	Request/Self	Request/Self	Request/Self
Prof. Hu Young Jeong Jong Hoon Lee	Jong Hoon Lee	Jeong Hwan Lim	Chae Eun Hong	Chae Eun Hong
2333/4171	4171	4175	4185	4185
<u>hulex@unist.ac.kr</u> jonghoon@units.ac.kr	jhwan0918@unist.ac.kr	jhwan0918@unist.ac.kr	hmj4564@unist.ac.kr	hmj4564@unist.ac.kr


UCRF TEMs Specification

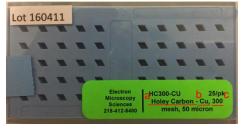
ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

	Advanced TEM	HR-TEM	Normal TEM	Bio TEM
Model	Titan ³ G2	JEM-2100F	JEM-2100	JEM-1400
Acceleration voltage(kV)	60 ~ 300	200	200	120
Specimen tilting(°)	α=±35, β=±15	X=±25, Y=±25	X=±35, Y=±30	X=±25, Y=±75
Cs corrector	Image Probe(On going)	Probe	x	x
Image resolution(nm)	0.065	0.1	0.14	0.2
STEM	0	0	0	X
HAADF resolution(nm)	0.07	0.1	x	x
EDS resolution(eV)	128	128	132	x
EDS window size(mm²)	120 (30 X 4)	80	50	x
EELS resolution(eV)	0.12	0.8	x	x


The Structure of TEM

The Structure of TEM

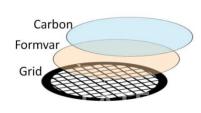
- Gun : LaB6
- · Condenser lens : 빛이 밝고 평행 광선이 되도록
- Condenser aperture : 시편에 조사되는 전자 빔 을 평행하게 하고 전자빔의 크기 조절
- · Objective lens : 결상하는 역할
- · Specimen chamber : 시편을 넣어서 조작
- **Objective aperture** : 전자 회절상의 한 점, 또는 몇 개의 점을 선택하여 결상
- **Selective area aperture** : 제한 시야 회절을 위 해 확대된 상에서 일부 영역 선택
- · Projector lens : 확대하는 역할
- Detector : 전자와 시편의 상호 작용으로 생기는 전자와 파 감지
- ・기록장치, 펌프 등...

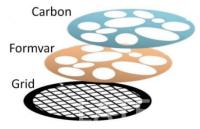

Sample preparation

1. Drop-casting process(nanoparticles)

- a. Choice of solvent to disperse particles (ex. Ethanol, DI water, toluene..)
- b. Adjusting concentration of solution
- c. Ultrasonic dispersion of your solution
- d. Selection of suitable support grid and grid frame
 - 1) Carbon formvar grid normal grid
 - 2) Holey carbon grid sample size below 5nm
 - 3) Lacey carbon grid carbon materials
 - 4) If you want to EDS analysis, you avoid the same material(sample, grid frame)
- e. Drop on your grid 2~3 point

f. Dry


2. Grid description


a. Grid type

- b. Grid frame
- c. How many mesh in grid

3. Grid type

- Carbon film grid

- Holey carbon grid

SCIENCE AND TECH

1. Check the equipment before use

- a. Error message
- b. Column vacuum
- c. LN_2

2. Increase the accelerating HT voltage

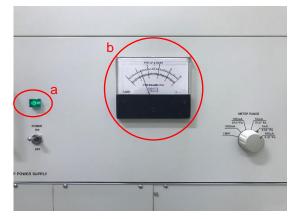
a. HT: 160keV \rightarrow 200kV

3. Loading of the specimen

- a. Sample loading on the specimen holder
- b. Dry ion pumping station
- c. Inserting and removing the specimen holder

4. Beam alignment

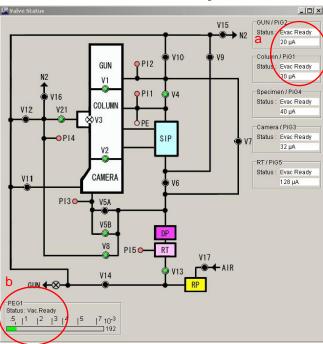
- a. CL aperture centering
- b. CL astigmatism correction
- c. High voltage centering
- d. OL astigmatism correction


5. Check the equipment after use

- a. Column vacuum
- b. Error message
- c. LN_2

Check the Column Vacuum

1. Check the control panel before use the equipment(SIP power supply)



- a. Check that the power lamp of the SIP is green
- b. SIP vacuum gauge should be 1~2

(Meter range knob \rightarrow 1mA x 10)

c. When it exceeds 3*10 Pa, you can't use the equipment

2. Check the vacuum system on the program

- a. Check the vacuum of Gun & column
 - 1) Status: Evac Ready
 - 2) Both values should be less than 30uA
- b. Check PEG1
 - 1) Status: Vac. Ready
 - 2) Bar: Green

Increase the HT voltage

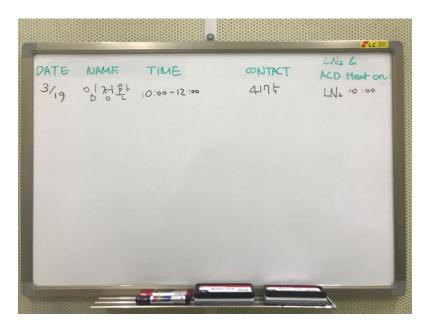
If you are seeing that message 'ACD Heat ON' you are first user at today. So, You have to do increase the HT voltage step.

	Ready	HT :		60.00	□× kV
Filament status:	NotReady	Beam c	urrent : 0	.0	uA
ON OFF	Down/l	Jp:	Step:	• KV	
Filament	Down/l	Jp:	6 9.7%	1 <u>·</u> More]
Conditioning ON Hold					
Auto HT					
Start Stop		Time	to finisl	. 0.7.	
2 Target: 100.00 KV +	Step: 1	and the second second	Time/Step:	and the state of the state of the state	10000
			t Condition –		
Filament max limit		a secondaria de la compañía de la co	Normal		
76%					
Bias		- Filar	nent Image		
Coarse7 🔻		Filamer	nt Control Spe	ed	
		No	rmal Setup		
Fine:9 💌		De	gas Setup	120 💌	min

1. Turn ON the HT

1) Click HT ON

- HT status : Ready \rightarrow ON
- HT : 160kV
- Beam current : 0 uA \rightarrow 80 uA


2. Increase the HT

- 1) Target : 200kV, Step : 0.1kV, Time/Step : 3 sec
- 2) Click start button of auto HT
 - HT : $160kV \rightarrow 200kV$
 - Beam current : 80 uA \rightarrow 102 uA

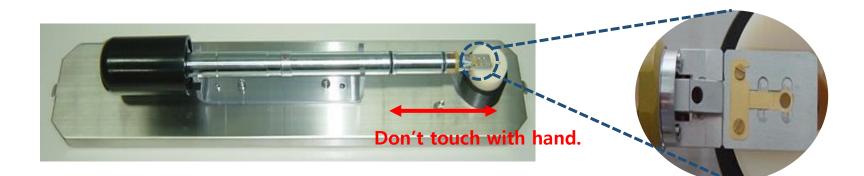
Check the equipment before use

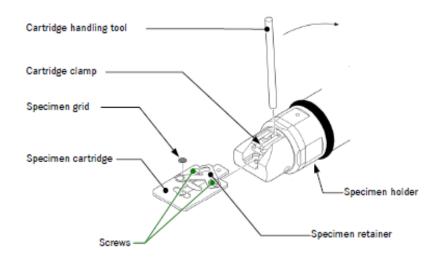
Check the white board

- Check notice and the message on the board (If there are something wrong, you can't use the equipment)
- 2. LN₂ should be filled below 4 h on the board
 - 200 kV as it is
 - Refill LN2
 - Write the refill time on the board

Fill LN₂

1. Fill LN₂




a. When you fill LN2, your eye must be upper the ACD tank using a ladder

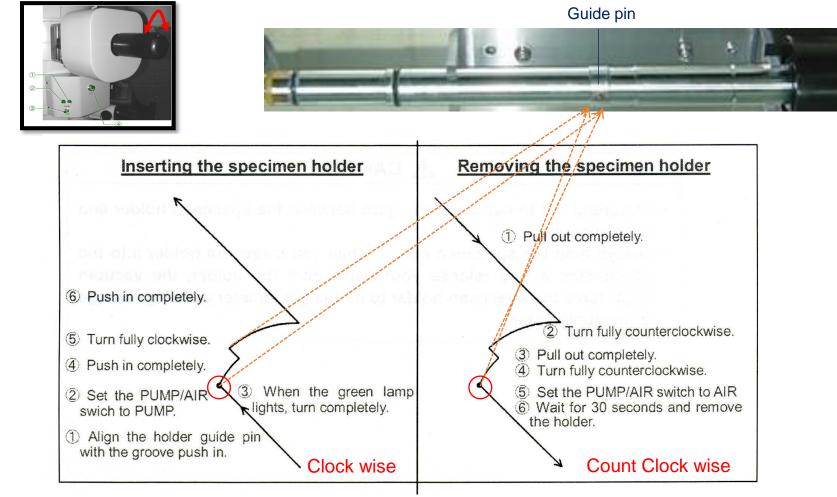
- b. Put the container to the tube entrance
- c. Lift the green valve toward to the top
- d. Fill LN2 to about 1/3 of the container
- e. Put the funnel into ACD liquid nitrogen tank fill LN2 fully
- f. After filling LN2, close the cap
 - Be sure that view chamber cover

Load a sample

- 1. Load the specimen where the upside of target face is located on upside
- 2. Put the spacer on the sample
- 3. Put the plate on the spacer and screw on the plate

***** Caution! If you tighten too much the screw, the screw line will be break .

Dry pumping station



- 1. Insert the holder
- 2. Check power on status
- 3. Click Evac button
- 4. After 5 minutes, click the Vent button
- 5. The Vent light will be stop, you can pull out the holder straightly

Inserting the Specimen Holder

1. Inserting the specimen holder

If you break the vacuum of TEM because you use inappropriate, you can't attend the training anymore. You just fail, so be careful in use

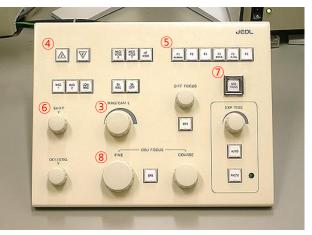
TEM controller window

ULSAN NATIONAL INSTITUTE SCIENCE AND TECHNOLOG

1. TEM controller window

🜆 Controller for J	iem-2100F/UHR								_ 🗆 X
File Dialogue Mor	nitor Property Option Mai	intenance Display JEC	LS Help						
HT SPC	Photo Status VAC	F1: Screen	F2: On-Axis	<u>F3:</u> Anode	<u>F4:</u> GUNA	F5: IL-Stig	F6: STEM	EM-21010/21020 : S	ingle Tilt Holder 📃
Emission	Acc.200.00 kV	TEM Spo	t CsT1	MAG :	X40k	⁽³⁾ Cur. Dens.	0.3 pA/cm2	⁶⁾ X= 0.1 μm	Z= 1.4 μm
Beam	Emission	Alph	a 4 🤞	Defocus:	0.0 nm	⁵ Exp. Time	0.5 sec M	Y= 0.1 μm	TY= 0.0 deg
Valve	124 µA								0% SF Stage 0% Neutral
Connected		I						1	JEOL //

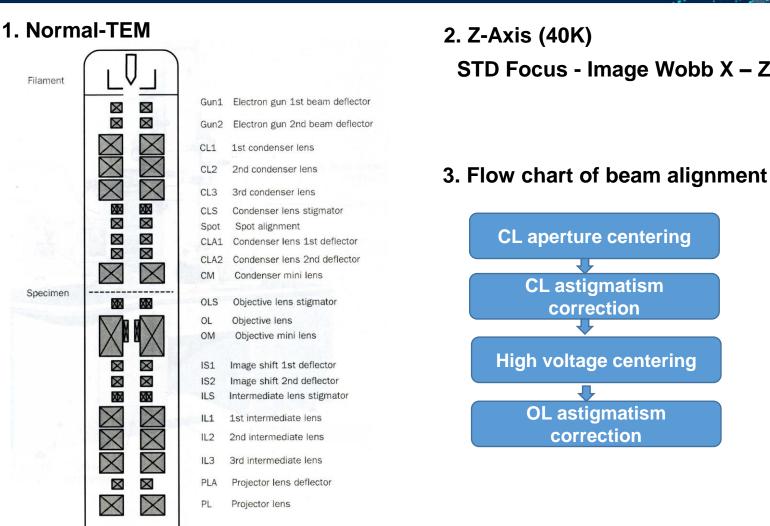
1) HT Acc.: Accelerating voltage


- **② MAG: Magnification**
 - LOW MAG: x50~x8000, MAG1, MAG2: x6000~x1.5M
- **③** Cur. Dens.: Beam current density on the fluorescent screen
- **④** Defocus: Defocus length
- **(5)** Exp. Time: Exposure time
- **(6)** X, Y, Z: Specimen position in the X, Y, Z direction
- **⑦** TX, TY: Specimen-tilting angle in the X, Y tilt
- (8) Stage neutral

Control Panel

1. TEM control panel

Left panel

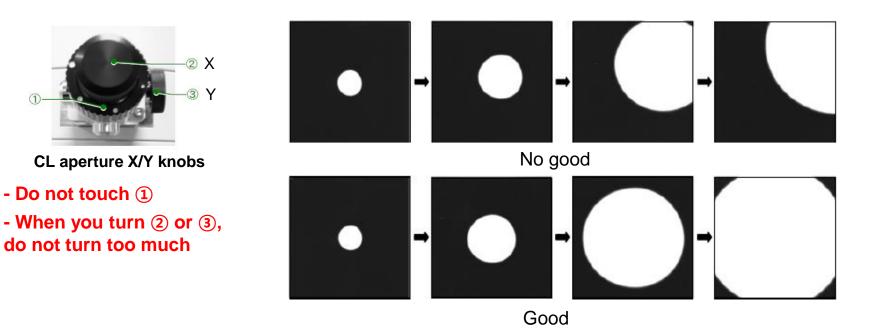

Right panel

- $(\ensuremath{\underline{1}})$ Beam switch: Turn on the beam
- ② BRIGHTNESS knob: Converges and spreads the electron beam
- ③ MAG knob: Varies the magnification
- ④ Z switches: Shift the specimen in the vertical(up/down)
- (5) F1 switch: Screen up/down
- 6 SHIFT X, Y knobs: Shift the electron beam in the X, Y direction
- ⑦ STD FOCUS: The objective lens current to the original reference
- (8) OBJ/FOCUS: Focuses the image
- (9) COND STIG button: Adjust the condenser lens stig when correcting the beam shape
- 10 DEF/STIG X,Y knobs

The Flow Chart of Beam Alignment

Filament

Specimen


STD Focus - Image Wobb X – Z button ▲▼

III SAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

CL Aperture Centering

1. Condenser lens aperture centering

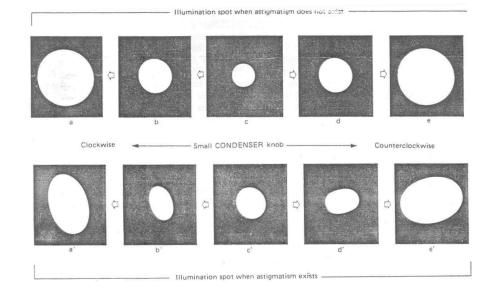
- 1) Adjust the magnification to over x40k
- 2) Beam centering
- 3) Spread the electron beam (80~90% of large screen)
- 4) The beam should be center of the large screen

JESAN NATIONAL INST SCIENCE AND TECHN

CL Astigmatism Correction

2. Condenser lens astigmatism correction

- a. Adjust the magnification to over x60k
- b. Beam centering
- c. Make the shape of the electron beam to be circular triangle


COND(CL) Stig button + DEF/STIG X/Y knobs

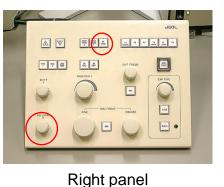
Left panel

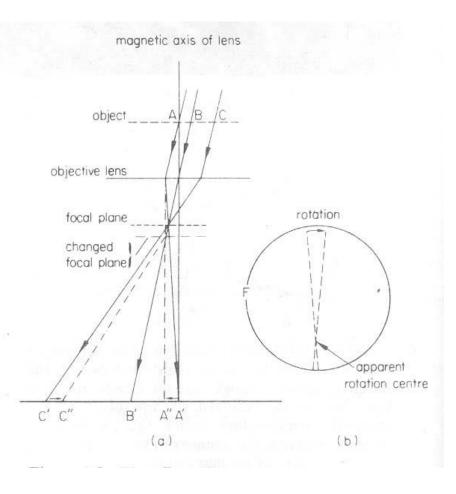
Right panel

연구지원본부장비교육자료 20

High Voltage Centering

3. High voltage centering


- a. Adjust the magnification to over x100k
- b. Beam centering
- c. Find the sharp edge of sample, and locate it the large screen center
- d. Down the small screen
- e. Let's make the edge point of the sample do wobbling at the small screen center
- f. Make the movement of the edge point of the sample minimize
 - If HV centering is well aligned, beam is wobbling at the beam center

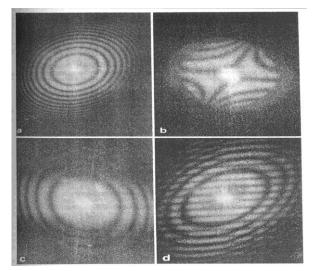

HT wobbler button +

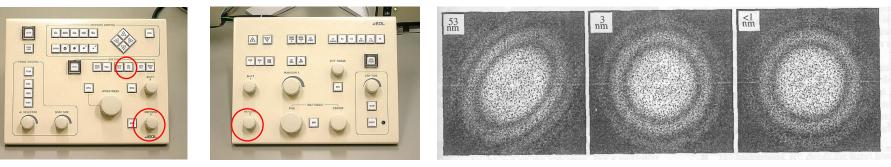
Bright Tilt button + DEF/STIG X/Y knobs

Left panel

연구지원본부장비교육자료 21

SAN NATIONAL INST


OL Astigmatism Correction


4. Objective lens astigmatism correction

- a. Adjust the magnification over x200k
- b. Beam centering
- c. You can use the amorphous phase of the sample or amorphous carbon grid
- d. Make Cur.den to under 40pA/mm2
 - Spread the beam with brightness knob
- e. Up the large screen with F1 button
- f. Start view and Process-Live-FFT
- g. Make the FFT image to be perfect circle

OBJ(OL) Stig button + DEF/STIG X/Y knobs

Left panel

Right panel

Removing the Specimen Holder

1. Removing the specimen holder

- a. Pull the specimen holder straightly
- b. Turn the holder anti-clockwise and pull and turn the holder anti-clockwise
- c. Down the switch 3 of the pump to air
- d. You have to wait until the value of specimen is over 220uA
- e. Pull the specimen holder completely

If you break the vacuum of TEM because you use inappropriate, you can't attend the training anymore.
You just fail, so be careful in use.

Decrease the HT voltage & ACD Heat on

When the blank time is over 5 h on the board or you are last user at today. You have to do decrease the HT voltage & ACD heat on step.

🔚 High Voltage Control			<u>- 0 ×</u>
HT status:	ON	HT :	200.00 kV
Filament status:	NotReadv	Beam curren	t:102.5 uA
HT D ON OFF			Step:
Filament ON OFF	Down/l	Jp:	9.7% 1 🔽
Conditioning ON Hold Auto HT a Start Stop			
		Time to fir	nish 0.0min
Target: 200.00 KV	Step: 0.1	▼ KV Time/Ste	ep: 3 💌 sec
Filament max limit		Filament Condit	ion
Bias 76%		Normal Filament Ima	ige
Dias	1 1		
Coarse7 🔻		Filament Contro	
Fine:8 💌		Degas Setu	up 120 💌 min

a. Decrease the HT

- 1) Target : 160 kV, Step : 1 kV, Time/Step : 1 sec
- 2) Click start button of auto HT (a)
 - HT : 200 kV -> 160 kV
 - Beam current : 102 uA -> 80 uA
- 2. Turn off the HT
 - 1) Click HT OFF (b)
 - Beam current : 80 uA -> 0 uA
- 3. Plug ACD heater (C)
- 4. ACD Heat On (d)

💹 Bake Out/ACD Heat	_ 🗆 🗡
ACD Heat Bake Out	
On Off	

Check the equipment after use

- When you finished analysis, check the equipment again
 - 1. Column vacuum
 - a. SIP vacuum gauge
 - b. Column vacuum on the program
 - 2. Error message on the program
 - 3. The reservation time on the google calendar
 - a. When the blank time is below 5 hours on the google calendar
 - 1) 200kV as it is
 - 2) Refill LN₂
 - b. When the blank time is over 5 hours on the google calendar
 - 1) Decrease and turn off HT voltage to 160kV
 - 2) Plug the ACD heater
 - 3) ACD heat on

* Check the white board

NAME 이것론	TIME 10:00-12:00	ውእፕ⋉୯୮ 4រባ <i>ዩ</i>	LN2 G ACD Heat on LN2 10:00

- 1. LN₂ should be filled below 4 h on the board
 - 200 kV as it is
 - Refill LN2
 - Write the refill time on the board
- 2. When the blank time is over 5 h on the board
 - Decrease HT voltage & ACD heat on (22page)
 - Write the ACD heat on time on the board

Emergency

