Date : 2018-04-17

Transmission Electron Microscopy

Normal-TEM self-user operation training course

Jong Hoon Lee

UCSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

***** TEM self-user training

- 1. Theory class (Prof. HY Jeong)
- 2. Operation class (TEM manager, Jong Hoon Lee, 4171)
 - A.M : Explanation of overall TEM analysis
 - P.M : Each person practices with manager

TEM test

- 1. During 40 min
- 2. You can apply a test on UCRF homepage every month

Process of TEM analysis for self-use

- 1. Request for self-user on UCRF homepage
- 2. Normal-TEM equipment reservation on UCRF homepage
- **3.** Write of reservation time on the board of normal TEM room before 6hours (after online reservation)
- Self user qualifications are given to the person who complete the whole training courses and pass the test by the rules of UCRF equipment use
- If you don't use Normal TEM at least once a month, your self user qualification will be expired. You have to reapply a test and pass

Instrument Overview

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Check the equipment before and after use

- Column vacuum
- Any error message
- Check LN2 tank(portable) and equipment chamber (Refill LN₂ for 4 h)
- On the board

Increase and decrease of HT voltage

- HT : 160 kV -> 200 kV

Loading the specimen

- Sample loading on the specimen holder
- Dry pumping station
- Inserting and removing the specimen holder

Beam alignment

- CL aperture centering
- CL astigmatism correction
- High voltage centering
- OL astigmatism correction

Check the white board

Date.	Name.	Time.	Contact.	$LN_2 &$	ACD Heat OI	n
10/19	임지은	9:20-11:20	41/1	CN2	9:00	

- Check notice and the message on the board (If there are something wrong, you can't use the equipment)
- 2. LN2 should be filled below 4 h on the board
 - 200 kV as it is
 - Refill LN2
 - Write the refill time on the board

Check the equipment before use

SIP power supply

Vacuum program on the screen

- 1. Check that the power lamp is green (1)
- SIP vacuum gauge should be 1~2(blue) (2)
 (When it exceed 3×10⁻⁵ Pa, you can't use the equipment)
- 3. Meter range knob (3)-> 1mA \times 10⁻⁵ Pa
- 4. (4) is always up.
- 1. Check the vacuum of Gun, Column (1)
 - Status : Evac Ready
 - Both values should be less than 30 uA
- 2. Check PEG1 (2)
 - Status : Vac. Ready
 - bar : green
- 3. Check the error message on a computer screen.

- If there are error messages on a screen, you have to take a picture and send to the manager.

Fill LN₂

- 1. Position the plastic beaker to the tube entrance
- 2. Raise up the green valve
- 3. Fill LN2 to about 1/3 of the beaker
- 4. Put the funnel into ACD liquid nitrogen tank, fill LN₂ fully
- 5. After filling LN₂, close the cap

- The face and body away with LN2 as possible
- When you fill LN2, you should climb a ladder positioned to the center of Normal-TEM table.

Increase the HT voltage

 If you are seeing that message 'ACD heat on' you are first user at today. So, You have to do Increase the HT voltage step.

Controller for JEM-2100/I le Dialogue Monitor Prope	IR ity Option Maintena	ance Display JEOLS Help
HT SPC Photo S HT Acc.2 Beam NotReady	COCOC KV TI Current 102 µA	EM Spot 1 Alpha 3
High Voltage Control HT status: O Filament status:N	N HT : otReady Beam	200.00 kV n current : 101.8 uA
HT 1 ON OFF	Down/Up:	Step: 1 kv
Filament ON OFF	Down/Up:	55.4%
Conditioning ON F Hold Auto HT 2 Start Stop		
Target 200.00 KV	Step: 0.1 Tim	ne to finish 0.0min.
Filament max limit	Fila	ament Condition Normal Filament Image
Coarse:3 Fine:4	File	ament Control Speed Normal Setup Degas Setup 120 - min

- Turn on the HT (1)
 Click HT ON
 - HT status : Ready -> ON
 - HT : 160 kV
 - Beam current : 0 uA -> 80 uA
- 2. Increase the HT (2)
 - 1) Target : 200kV, Step : 0.1 kV, Time/Step : 3 sec
 - 2) Click start button of auto HT
 - HT : 160 kV -> 200 kV
 - Beam current : 80 uA -> 102 uA

Grid

0				0		\bigcirc	0	0
600 mesh	500 mesh	400 mesh	300 mesh	200 mesh	100 mesh	50 mesh	single hole	slot hole

Load a sample

- 1. Load the specimen where the upside of target face is located on upside
- 2. Put the spacer on the sample
- 3. Put the plate on the spacer and screw on the plate

***** Caution! If you tighten too much the screw, the screw line will be break .

Dry pumping station

- 1. Insert the holder
- 2. Check power on status
- 3. Click Evac button
- 4. After 5 minutes, click the Vent button
- 5. The Vent light will be stop, you can pull out the holder straightly

Inserting the specimen holder

- 1. Insert the specimen holder straightly (1) (You can hear the two sound of valve)
- 2. Position up the switch (2) from air to pump specimen pump check (240->100->40)
- 3. You have to wait until the light to be green
- 4. Step 1.Turn the holder clockwise(15°) and insert(5cm) (3) step 2. Turn the holder clockwise(75°) and insert(fully) 1min wait (4)(5)
- 5. You can turn on the filament
- If you break the vacuum of TEM because of inappropriate manner, You can't attend the training anymore

Panel

Left panel

- 1 BEAM switch
- **② APERTURE CONTROL**
- **③ PROBE CONTROL**
- **④** ROOM LAMP switch
- **(5)** DEF/STIG switches
- 6 BRIGHTNESS knob
- **⑦** BRIGHTNESS CRS switch
- (8) SHIFT X knob
- (9) SHIFT CRS switch
- 10 DEF/STIG X knob
- 1 DEF-STIG CRS switch

Right panel

- (1) Wobbler switches
- **②** Function switches
- 3 SHIFT Y knob
- (4) DEF-STIG Y knob
- **(5) MAG/CAM L knob**
- 6 OBJ FOCUS knob
- **⑦ DIFF FOCUS**
- **8 EXP TIME/PHOTO**
- (9) STD FOCUS switch
- 10 F switches
- (1) Z switches

Right panel

- 1. Adjust the magnification to over x40k
- 2. Beam centering
- 3. The beam should be center of the large screen
- 4. Push STD FOCUS switch (1)
- 5. Push Image Wobb X (2)
- 6. Adjust Z Height for minimum movement (③)
- 7. Deselect Image Wobb X (2)
- 8. Adjust with OBJ Focus (④)

Condenser Lens aperture centering

GOOD

- 1. Adjust the magnification to over x40 k
- 2. Beam centering
- 3. Open the electron beam
- 4. The beam should be center of the large screen

Do not touch ①
you can adjust by ② or ③ , do not turn too much

Condenser Lens astigmatism correction

- **1.** Adjust the magnification to over x60k
- 2. Beam centering
- 3. Make a shape of the electron beam to be circular triangle.
- CL Stig button + DEF/STIG X/Y knobs

- **1.** Adjust the magnification to over x100k
- 2. Beam centering
- 3. Find the sharp edge of sample and than be located on the large screen center.
- 4. Down the small screen
- 5. Let's make the edge point of the sample do wobbling at the small screen center

Left panel

Right panel

HT wobbler button + Bright button + DEF/STIG X/Y knobs

- 1. Adjust the magnification to over x200k
- 2. Beam centering
- 3. You must be use the amorphous phase of the sample
- 4. Make Cur. dens to under 40 pA/mm² -Spread the beam with brightness knob
- 5. Up the large screen with F1 button
- 6. Start view and Process-Live-FFT click
- 7. Make FFT image to be perfect circle

Left panel

Right panel

OL Stig button + wobbler + DEF/STIG X/Y knobs

Focusing & imaging

a: Underfocus

b: Just-focus

c: Overfocus

- 1. Select the image you went
- 2. Adjust the magnification to x300k
- 3. Beam centering
- 4. Make Cur. dens to under 40 pA/mm² Spread the beam with brightness knob
- 5. Up the large screen with F1 button
- 6. Focusing and take the image

- 1. Mag: 40K
- 2. Beam centering
- 3. Increase the beam size
- 4. Stage Neural (twice)

You can turn off the filament.

Removing Specimen Holder

- 1. Pull the specimen holder straightly (1)
- 2. Turn the holder anti-clockwise (75°) and pull and turn the holder anticlockwise (15°) (2)(3)
- 3. Down the switch of the pump to air (4)
- 4. You have to wait until the value of specimen is over 230 μ A (5)
- 5. Pull the specimen holder completely.

If you break the vacuum of TEM because of inappropriate manner, You can't attend the training anymore

Decrease the HT voltage & ACD Heat on

When the blank time is over 5 h on the board or you are last user at today. You have to do decrease the HT voltage & ACD heat on step.

1. Decrease the HT

- 1) Target : 160 kV, Step : 1 kV, Time/Step : 1 sec
- 2) Click start button of auto HT (1)
 - HT : 200 kV -> 160 kV
 - Beam current : 102 uA -> 80 uA
- 2. Turn off the HT
 - 1) Click HT OFF (2)
 - Beam current : 80 uA -> 0 uA
- 3. Plug ACD heater (3)
- 4. ACD Heat On (4)

Check the equipment after use

SIP power supply

- 1. Check that the power lamp (1) is green.
- SIP vacuum gauge should be 1~2(blue) Meter range knob (3)-> 1 mA × 10⁻⁵ Pa
- When it 2 exceed 3 × 10⁻⁵ Pa, you can't use the equipment.
- 4. (4) is always up.

Vacuum program on the screen

- 1. Check the vacuum of Gun, Column (1)
 - Status : Evac Ready
 - Both values should be less than 30 uA
- 2. Check PEG1 (2)
 - Status : Vac. Ready
 - bar : green

Check the white board

- **1.** LN₂ should be filled below 4 h on the board
 - 200 kV as it is
 - Refill LN2
 - Write the refill time on the board
- 2. When the blank time is over 5 h on the board
 - Decrease HT voltage & ACD heat on (22page)
 - Write the ACD heat on time on the board

장비명	투과전자현미경 (Normal-TEM)					
장비위치	B104	자산번호	14000483			
모델명	JEM-2100	제조사	JEOL			
장비사양	 Resolution Point in TEM mode : 0.23 nm or better Lattice in TEM mode : 0.14 nm or better Electron Gun : Lab6 (200 kV) Specimen tilting : X=+-35', Y=+-30' Imaging recording system : CCD Spot Size TEM mode : 2~5 nm dia or more EDS, NBD, CBD mode : 0.5~2.4 nm dia or more EDS Resolution : 132 eV 					
업체 엔지니어	김홍중 책임	업체 엔지니어 연락처	010-9090-6818			
장비 담당자	이종훈	장비 담당자 연락처	052-217-4171			

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY